

Implementation of robustness in codes & System effects in timber structures

John Dalsgaard Sørensen Aalborg University, Aalborg, Denmark

- Introduction
- Robustness Eurocodes
- Robustness Danish code
- System effects in timber structures examples
- Summary

Introduction

Reasons to failures:

- Extreme high load / extreme low strength: very unlikely (probability of failure per year $\sim 10^{-5}$ -10⁻⁶)
- Other reasons:
 - Unexpected hazards
 - Design errors
 - Execution errors
 - Deterioration of critical structural elements
- \rightarrow Robustness requirements

Introduction - robustness

Transvaal Park, Moscow Februar 2004

Introduction - robustness

Bad Reichenhalle Germany, 2006

Introduction - robustness

Siemens superarena København, Januar, 2003

EN1990 and EN1991-1-7

- A structure shall be designed and executed in such a way that it will not be damaged by events such as :
- explosion,
- impact, and
- the consequences of human errors, to an extent disproportionate to the original cause.

Potential damage shall be avoided or limited by:

- avoiding, eliminating or reducing the hazards to which the structure can be subjected
- selecting a structural form which has low sensitivity to the hazards considered
- selecting a structural form and design that can survive adequately the accidental removal of an individual member or a limited part of the structure, or the occurrence of acceptable localised damage
- avoiding as far as possible structural systems that can collapse without warning
- tying the structural members together

The basic requirements should be met:

- by the choice of suitable materials
- by appropriate design and detailing
- by specifying control procedures for design, production, execution, and use relevant to the particular project

Figure 3.1 - Strategies for Accidental Design Situations

Design situations

- identified accidental action

Mitigation of the risk of accidental actions - strategies:

- a) **Preventing the action from occurring** or reducing the probability and/or magnitude of the action
- **b) Protecting the structure**
- c) Ensuring that the structure has sufficient robustness
 1) designing key elements
 - 2) designing structural members, and selecting materials, to have sufficient <u>ductility</u>
 - 3) incorporating sufficient **<u>redundancy</u>** in the structure

Design situations

- limiting extent of localised failure

Potential failure arising from an unspecified cause shall be mitigated

- a) Designing key elements, on which the stability of the structure depends, to sustain the effects of a model of accidental action $A_d = 34 \text{ kN/m}^2$
- b) Designing the structure so that in the **event of a localised failure** (e.g. failure of a single member) the **stability of the whole structure** or of a significant part of it **would not be endangered**
- c) Applying prescriptive design/detailing rules

Actions due to accidental actions from unidentified causes

Buildings in <u>Consequences Class 1</u>:

- No specific consideration is necessary
- Buildings in <u>Consequences Class 2a</u> (Lower Group):
- Effective horizontal ties

Buildings in <u>Consequences Class 2b</u> (Upper Group):

• Effective horizontal ties for wall construction, together with effective vertical ties in all supporting columns and walls

- Check notional **removal** of each supporting column, ... building remains stable
- Design of "key elements"
- Buildings in <u>Consequences Class 3</u>:
- Systematic risk assessment of the building

AALBORG UNIVERSITY

Key

(A) Local damage not exceeding 15 % of floor area in each of two adjacent storeys

- (B) Notional column to be removed
- a) Plan b) Section

Figure A.1 – Recommended limit of admissible damage.

Robustness – Danish code DS 409

A structure is robust:

• when those parts of the structure essential for the safety only have little sensitivity with respect to **unintentional loads and defects**,

Oľ

• when **extensive failure of the structure will not occur** if a limited part of the structure fails.

Robustness – Barrier model

Robustness – probabilistic model

- Exposure unintentional loads and defects $E_i : P(E_i)$
 - Examples: unforeseen load effects, unforeseen settlements; incorrect structural modelling; incorrect computational model
- Damage due to exposure D_j : $P(D_j|E_i)$
 - Examples: loss of column; failure of part of storey area
- Consequence Collapse $C \qquad P(C|E_i \cap D_j)$
 - Example: collapse of major part of structural system (building, bridge,...)

Total probability of collapse:

$$P(C) = \sum_{i} \sum_{j} P(C | E_i \cap D_j) P(D_j | E_i) P(E_i)$$

Robustness – probabilistic model

Key Element: $P(C|E_i \cap D_j) \cong 1$

Increasing the robustness at the design stage will in many cases only increase the cost of the structural system marginally

The key point is often to use a reasonable combination of suitable structural system and materials with ductile behaviour

Key element - designed with extra safety

Same reliability of:

- Structure modelled by 2 or more parallel failure elements *and*
- key element

 \rightarrow Key elements designed with material safety factor increased by a factor 1.2

Systems

- General systems
- Roof elements
- Roof trusses

General systems

Gollwitzer & Rackwitz 1990

Systems – one beam

Systems – one beam

Systems – one beam

Load bearing capacity of roof trusses

- Stochastic model for strength of timber beam
- Load bearing capacity of roof truss
- Statistical characteristics
- Reliability aspects

Based on paper by Sørensen, Damkilde & Munch-Andersen, 2004

Load bearing capacity of roof trusses

- Structural timber elements: strength and stiffness vary randomly along elements due to natural variability
- Systems effect in timber systems due to
 - unlikely that maximum load effects occur at cross-sections with very low strength
 - redistribution of load effects such that cross-sections with low strength and stiffness will generally not have large load effects
 - non-linear material behaviour
- Stochastic model for
 - bending strength and stiffness of timber beams
 - typical timber structural systems such as roof trusses

• Statistical characteristics of load bearing capacity

Stochastic model

• Bending strength of timber beam

Stochastic model

Bending strength:

- Lognormal distributed: $f_{ij} = \tau_i \ \varepsilon_{ij}$ COV = 0.25 τ_i = mean strength of beam no *i*: Lognormal ε_{ij} = difference between mean strength of beam *i* and strength in cross-section *j*: Lognormal
- 40% and 60% of the variance of f_{ij} are related to τ_i and ε_{ij} **Compression strength:**
- Lognormal distributed COV = 0.15**Tension strength:**
- Lognormal distributed COV = 0.30

Example 1 – roof truss

Load: permanent + snow

Example 1 – roof truss

Load:	perman	ent	snow		permanent + snow		
	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}	
Non-parametric	0.13	2.51	0.12	2.80 2.79	0.13	2.33	
LogNormal	0.17	2.51	0.14		0.17	2.32	
Weibull-2p	0.10	2.53	0.09	2.81	0.11	2.33	
P _{0.05}		2.47		2.88		2.08	

Example 2 – collar tie roof truss

Load: permanent + snow + imposed

Example 2 – collar tie roof truss

Load:	Perma load	nent	Imposed load		Snow load		Imposed + permanent load		Snow + im- posed + per- manent load	
	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}	COV	P _{0.05}
Non-par.	0.09	3.19	0.16	5.70	0.13	9.97	0.18	4.69	0.15	7.87
LogNormal	0.13	3.17	0.18	5.67	0.16	9.87	0.21	4.66	0.20	7.77
Weibull-2p	0.08	3.19	0.11	5.72	0.10	9.94	0.13	4.70	0.13	7.84
P _{0.05}		2.99		5.55		9.80		3.65		6.14

Summary for truss element examples

- Load-bearing capacity: COV is approximately $15\% \rightarrow$ system factor = 1.1
- Characteristic values are at least 10% higher → system factor = 1.1
- System factor = 1.2 for design load bearing capacity

Roof elements

Hansson & Isaksson 2005

Roof elements - models

Roof elements

One beam:

5th percentile	Mean value	COV		
[MPa]	[MPa]	[%]		
31.28	45.23	20.9		

System: Failure:

- weakest section

- collapse of system (roof element)

Table 5: Simulation results for weakest T-section in the system and for the failure load of the system.

Parameter	с	n	Lj	layer	k	t :	Θ	η	Weakest T-section in system			Failure load		
set									5 [™] percentile	mean	COV	5 [™] percentile	mean	COV
	[m]		[m]		[N/m]	[m] 1	n]		[kN/m ²]	[kN/m ²]	[%]	[kN/m ²]	[kN/m ²]	[%]
1	0.6	15	4.00	5	1	0.012	0.4	0.2	3.19	4.05	12.09	4.01	4.84	10.07
2	0.6	15	4.00	5	1075	0.012	0.4	0.2	4.42	5.54	11.36	5.40	6.50	9.63
3	0.6	15	5.00	5	1	0.012	0.4	0.2	2.04	2.56	11.88	2.59	3.08	9.29
4	0.6	15	5.00	5	1075	0.012	0.4	0.2	2.84	3.51	11.11	3.48	4.12	8.87
5	0.6	15	4.00	7	1	0.018	0.4	0.2	3.20	4.06	12.07	4.14	4.92	9.64
6	0.6	15	4.00	7	1075	0.018	0.4	0.2	5.28	6.60	11.33	6.52	7.76	9.49
7	0.6	10	4.00	5	1	0.012	0.4	0.2	3.36	4.25	12.98	4.14	5.02	10.91
8	0.6	10	4.00	5	1075	0.012	0.4	0.2	4.64	5.79	12.19	5.59	6.72	10.28
9	0.4	15	4.00	5	1	0.012	0.4	0.2	4.78	6.07	12.09	6.20	7.37	9.60
10	0.4	15	4.00	5	1075	0.012	0.4	0.2	6.63	8.31	11.36	8.29	9.82	9.34
11	0.6	15	4.00	5	1	0.012	0.2	0.1	3.19	4.05	12.09	3.94	4.74	10.41
12	0.6	15	4.00	5	1075	0.012	0.2	0.1	4.42	5.54	11.36	5.26	6.34	10.09

Roof elements

System:

Failure:

- weakest section
- collapse of system (roof element)

Parameter		Weakest T-sectio	on in system		Failure load		
set		5 th percentile	mean	COV	5 th percentile	mean	COV
		[kN/m ²]	[kN/m ²]	[%]	[kN/m ²]	[kN/m ²]	[%]
1		3.19	4.05	12.09	4.01	4.84	10.07
2		4.42	5.54	11.36	5.40	6.50	9.63
3		2.04	2.56	11.88	2.59	3.08	9.29
4		2.84	3.51	11.11	3.48	4.12	8.87
5		3.20	4.06	12.07	4.14	4.92	9.64
6		5.28	6.60	11.33	6.52	7.76	9.49
7		3.36	4.25	12.98	4.14	5.02	10.91
8		4.64	5.79	12.19	5.59	6.72	10.28
9		4.78	6.07	12.09	6.20	7.37	9.60
10		6.63	8.31	11.36	8.29	9.82	9.34
11		3.19	4.05	12.09	3.94	4.74	10.41
12	L _	4.42	5.54	11.36	5.26	6.34	10.09

Summary

- Robustness
 - Key elements
 - Redundancy local failure does not imply collapse
 - Ductility
 - Prescriptive design rules
- System effects in timber structures
 - unlikely that maximum load effects occur at crosssections with very low strength
 - load sharing
 - redistribution of load effects
 - non-linear material behaviour

WG3 – focus points

Reliability of timber systems:

- Spatial dependence for material strength parameters / loads
- Reliability / risk assessment of
 - Roof trusses / Roof elements / Glued laminated beams / timber systems of solid timber / ...

Robustness of timber structures:

- Reliability / risk based requirements related to consequences of direct failure and follow-up consequences
- Consensus on the characteristics of timber systems regarding redundancy and robustness
- Development of simplified approaches for assessment of robustness, suitable for day-to-day engineering purposes

Robustness of timber systems

Example:

Solid timber structures – robustness problems?

WG3

Link to:

- JCSS Task-Group on Robustness report primo 2008
- COST TU601 Robustness of Structures

• COST E55-WG3: Application on timber structures

WG3

Working questions:

- How to model and assess reliability of timber structures modelled as systems?
- Ductile / brittle failures?
- Key elements how to design? To which reliability level?
- Robustness index for timber structures?
- How is robustness requirements in Eurocodes handled for timber structures? Information in National Annexes?